Harsh environment long distance photoelectric Sensor in metal housing E3NT

- 4 Diffuse reflective E3NT-L application optimized models:
- Extra long distance type for setting distances up to 3 m
- Window heating type for low temperature environments
- Analog output type for distance information
- Fast response type for high speed detection and counting
- Retro reflective E3NT-R models with sensing distance up to 16 m
- Two programmable outputs for 'window teaching'
- Double triangulation for stable detection of reflective objects
- IP67 and IP69k for highest resistance in wet environments

Condensation in often cleaned environments or due to rapid temperature changes is prevented by the completely sealed housing of the E3NT and the optional window heating.

With the optic link, the sensor can be remotely set and checked while it is operating in an area where access is restricted.

This robust sensor is ideal for operation in harshest environments.

Ordering Information

Sensors

Sensing method	Type	Appearance	Connection method	Sensing / Setting distance	Model
Distance setting (BGS/FGS)	Long distance		M12 Connector (5-pole)		E3NT-L17-20
	Window heating				E3NT-LH17
	Fast response	$\xrightarrow[+\square]{\square} \xrightarrow{+\cdots}$			E3NT-L17
					E3NT-L37
	Analog and digital output	$\xrightarrow[\square]{\square} \xrightarrow{+\cdots}$			E3NT-L27
		$\stackrel{\square}{\square}$			E3NT-L47
Retro reflective (with MSR-polarisation)	Long distance				E3NT-R17 E3NT-R37

Accessories (order separately)

Optical data link

Communication method to sensor	Appearance	Communication method to PC	Model	
IR data interface	RS232		E3NT-AL232 2M	

Laser alignment aid

Max. distance for visible spot	Appearance	Operation time	Model
50 m		min. 5 hours with new battery	E3NT-AP1

Appearance	Model	Qty.	Remarks
	E39-EL1	1	Universal mounting bracket

Reflectors
E39-R8

Sensor I/O connectors

Rating/performance
Sensors

Item	Model				
	$\begin{aligned} & \text { E3NT-L17 } \\ & \text { E3NT-L37 } \end{aligned}$	$\begin{aligned} & \text { E3NT-L27 } \\ & \text { E3NT-L47 } \end{aligned}$	$\begin{aligned} & \text { E3NT-LH17 } \\ & \text { E3NT-LH37 } \end{aligned}$	E3NT-L $\square 7-20$	E3NT-R
Sensor type	Diffuse reflective sensor with background suppression respectively foreground suppression				Retroreflective sensor
Signal evaluation	Double triangulation method				Polarization
Configuration	By push button on the sensor or with a PC connected via the optical data link E3NT-AL232 2m				
Operating modes	Background suppression, foreground suppression, background and foreground suppression (2-point window evaluation)				---
Light source	Infrared LED 850-880 nm				$\begin{aligned} & \hline \text { Red LED } \\ & 660 \mathrm{~nm} \end{aligned}$
Rated sensing distance	2 m			3 m	16 m
Setting distance Sr	Distance - setting possible between				---
	$\begin{aligned} & 0.2 \ldots 2.0 \mathrm{~m}(\underset{y}{n} \\ & 0.2 \ldots 1.7 \mathrm{~m}(6 \end{aligned}$	\% remission) remission)	$\begin{aligned} & 0.2 \ldots 2.0 \mathrm{~m} \\ & \text { (90 \% remission) } \\ & 0.2 \ldots 1.4 \mathrm{~m} \\ & \text { (} 6 \% \text { remission) } \end{aligned}$	$\begin{aligned} & 0.2 \ldots 3.0 \mathrm{~m} \\ & \text { (90 \% remission) } \\ & 0.2 \ldots 2.7 \mathrm{~m} \\ & \text { (6\% remission) } \end{aligned}$	$0.2 \ldots 16.0$ m
Standard measured object	Kodak gray card 90\% (white), size: $200 \times 200 \mathrm{~mm}$				---
Blind zone	<0.1 m				< 0.15 m
Black/white error (6\%/90\%)	< 15% of setting distance Sr				---
Hysteresis (typical)	$<5 \%$ of setting distance Sr or 4 cm (for white 90%) < 10% of setting distance Sr or 6 cm (for black 6%)			$<10 \%$ of setting distance Sr or 10 cm (for white) $<15 \%$ of setting distance Sr or 10 cm (for black)	---
Repetition accuracy	$<5 \%$ (of setting distance Sr) or 4 cm			< 5% (of setting distance Sr) or 10 cm	---
Light spot diameter	$<40 \mathrm{~mm}$ in the case of $\mathrm{Sr}=2 \mathrm{~m}$				$\begin{aligned} & \text { app. } 100 \mathrm{~mm}^{* 1} \\ & \text { at } 10 \mathrm{~m} \end{aligned}$
Minimum object size	> 40 mm				
Ambient light immunity to EN 60947-5-2:	Halogen lamps ($100-120 \mathrm{~Hz}>10,000$ lux Fluorescent lamps (30 kHz) > 5,000 lux Energy saving lamps > 2,000 lux				
Utilization category to EN 60947-5-2	DC 12				
Rated operating voltage	+ 24 V DC, polarized				
Operating voltage range	+ $10 \ldots+30 \mathrm{~V}$ DC			$\begin{aligned} & +11 \ldots \\ & +30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & +10 \ldots \\ & +30 \mathrm{VDC} \end{aligned}$
Current consumption	$\begin{aligned} & \hline<90 \mathrm{~mA} \\ & \text { (display off) } \\ & <110 \mathrm{~mA} \\ & \text { (display on) } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline<100 \mathrm{~mA} \\ \text { (display off) } \\ <120 \mathrm{~mA} \\ \text { (display on) } \\ \hline \end{array}$	< 220 mA with front pane heating	$\begin{aligned} & <110 \mathrm{~mA} \\ & \text { (display off) } \\ & <130 \mathrm{~mA} \\ & \text { (display on) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { < } 80 \mathrm{~mA} \\ & \text { (display off) } \\ & <110 \mathrm{~mA} \\ & \text { (display on) } \end{aligned}$
Power-on delay	< 300 ms				
Input - / Output - pins	Pin 2 = Input (In 2) or output (Out 2), depending on configuration Pin 4 = Output (Out 1)				
	$\begin{aligned} & \begin{array}{l} \operatorname{Pin} 5=\operatorname{Input} \\ (\ln 1) \end{array} \\ & \hline \end{aligned}$	Pin 5 = Analog output	Pin 5 = Input (In		
Digital Outputs	User set functions (e.g. switching output, alarm output, ...)				
Output circuit	User set PNP (open collector), NPN (open collector) or complementary (push-pull)				
Output current	max. 100 mA				
Voltage drop	$<2.0 \mathrm{~V}$				
Residual current	< $100 \mu \mathrm{~A}$				
Circuit protection	Reversed power supply, overload, short-circuit (pulsed)				

Item	Model				
	$\begin{aligned} & \text { E3NT-L17 } \\ & \text { E3NT-L37 } \end{aligned}$	$\begin{aligned} & \text { E3NT-L27 } \\ & \text { E3NT-L47 } \end{aligned}$	$\begin{aligned} & \text { E3NT-LH17 } \\ & \text { E3NT-LH37 } \end{aligned}$	E3NT-L $\square 7-20$	E3NT-R
Inputs	User set functions (e.g. teach-in, trigger, test, ...)				
Input circuit	Voltage input +10 V ... $\mathrm{U}_{\text {supply }}$			Voltage input $+11 \mathrm{~V} . . . \mathrm{U}_{\text {supply }}$	Voltage input $+10 \mathrm{~V} \ldots \mathrm{U}_{\text {supply }}$
Input pulse duration	min .1 ms				
Analog Output		Current output 3.21 mA : 3 mA correspond to distance <0.2 m - 4 ... 20 mA correspond to distance 0.2 m ... 2.0 m - 21 mA correspond to distance > 2.0 m (or no object)			
Switch-on/off time (ToN / T ${ }_{\text {OFF }}$)	S 2.5 ms	55 ms	\$ 2.5 ms	S20 ms	S 2.0 ms
Insulation resistance	20 M a at 500 V DC				
Insulation voltage strength	$1,0 \mathrm{kV} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ (1 min)				
Impulse strength (insulation)	$1,5 \mathrm{kV}$				
Dimensions (length x width x depth)	$85 \times 27 \times 65 \mathrm{~mm}$				
Materials					
Housing	Powder-coated aluminum, sea-water resistant, 231 GD AISi12 (Cu) (standard version)				
Front pane	Glass				
Keyboard	HTV silicone				
Seals	RTV silicone				
Housing color	Grey, RAL 7030				
Assembly	Screw fastening by way of four M5 threads and two M5 through holes or with universal mounting bracket (order separately)				
Connection	M12 connector, 5-pole (piercing)				
Ambient temperature range	$-25^{\circ} \mathrm{C} \ldots+$ $-10^{\circ} \mathrm{C} \ldots+$ $55^{\circ} \mathrm{C}$ $55^{\circ} \mathrm{C}$ (analog output)		$\begin{aligned} & -40^{\circ} \mathrm{C} \ldots+ \\ & 55^{\circ} \mathrm{C} \end{aligned}$	$-25^{\circ} \mathrm{C} . . .+55^{\circ}$	
Storage temperature range	$-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$	
Permissible relative humidity	35%... 95%, no condensation				
Enclosure rating	IP 67 (EN 60529), IP 69k (DIN 40050)				
Protection class	II (50 V DC)				
Vibration resistance	$\pm 1.5 \mathrm{~mm}, 1 \mathrm{~h}, 10-70 \mathrm{~Hz}$ (IEC 68-2-6)				
Shock resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$ (IEC 68-2-27)				
User set parameters	- Mode - Output function - Teach/set switching points - Output switching - Function on connector pin 2 and 5 - Switch-on and off delay - Type of switch-off time function - Type of display on the sensor - Keyboard lock - Energy saving mode - Display direction - Reset to factory defaults				

Accessories
E3NT-AL 2322 M

Item	
Dimensions (length x width x depth)	$29.5 \times 72.9 \times 26.4 \mathrm{~mm}$
Housing material	ABS and PMMA (IR transparent)
Housing colour	Black, RAL 9005
Assembly	Snap mounting on sensor
Connection	2 m connecting cable with 9-pole sub-D connector
Ambient temperature range	$-10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Storage temperature range	$-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Permission relative humidity	$35 \%^{\ldots} . .85 \%$, no condensation
Degreee of protection to EN 60529 / IEC 529	IP 54
Emitted light	IR communication element 880 nm
Rated operating voltage	Via RS 232 interface from PC
Current consumption	6 mA

E3NT-AP1

Item	
Supply voltage	3 V DC
Battery type	Button battery $\varnothing 11.6 \mathrm{~mm}$, thickness: $5.4 \mathrm{~mm}, 3 \mathrm{Vm}$, type: CR1/3N
Ambient temperature range	$+10^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$
Storage temperature range	$-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operation and storage: $35 \% \ldots 85 \%$ (with no icing or condensation)
Ambient environment	No corrosive gases
Operation time period	min. 5 hours operation with 1 new battery
Degree of protection	IP20 (EN 60529)
Case material	Case: ABS/PC Base plate: Aluminium
Weight	Approx. 42 g
Accessories:	1 Instruction sheet, 1 battery type CR1/3N
Max. distance for a visible beam spot	about 50 m (depending on the ambient light and surface conditions)
Laser beam power	<1 mW
Laser class	Laser Class II

Operating range
(90\% remission)

E3NT-L27/L47

Analog output current
(90\% remission)

E3NT-L17-20 and E3NT-L37-20

Parallel Operating range

Black/White - Error
($6 \%-90 \%$ remission, typical)

Hysteresis

E3NT-R

Spotsize

Circuit diagram

Output

Push-pull output circuit (Out1 at pin 4 / Out2 at pin 2)	Load connection		
	PNP	NPN	Analog

When use is made of the PNP or NPN output circuit, the output circuit that is not selected is deactivated. When used as a complementary output, NPN or PNP outputs act in antiphase as the switch state changes.

Input

The sensor inputs are realised in positive logic and detect a positive voltage level of more than 1 ms duration as a valid signal if the voltage level is between 10 V and the power supply voltage.

Connectors

Class	Wire jacket color	Connector pin no.	Application
For DC	Brown	1	Power supply (+V)
	White	2	Output or Input Out2 / In2
	Blue	3	Power supply (OV)
	Black	4	Output Out1
	Grey	5^{*}	Analog Output or Input In1

* Not connected for standard 4-pole connectors

Nomenclature

LED display	The distance from the measured object and the names of the menu levels during set-up of the sensor are displayed by the 4-digit 7 -segment LED display. The display appears as red digits or letters. If the sensor is set to a bar chart display, the distance from the measured object is displayed as a green LED bar chart.		
LED	The switching status and the stability of the two outputs are signalled as follows by two LEDs, visible from the top and the front of the sensor:		
	Yellow LED (Output 1)	ON	Object stably detected
		Blinking	Object not stable detected
		OFF	No object within range
	Red LED (Output 2)	ON	Object stably detected
		Blinking	Object not stable detected
		OFF	No object within range
	Status LED	ON	Set-up menu selected
		Blinking	Menu level with change of setting distance
		OFF	RUN (normal) mode

Operation

Setting the switching points
The switching points can either be user set (Teach-in mode) with a measured object positioned at the corresponding distance or can be set using the setting input, for remote setting. For each output of the sensor (up to two), up to two switching points can be user set.
Only one switching point is active in the foreground and background suppression modes.
For the 2-point window evaluation mode, two switching points must be set.

Teaching the switching points in the normal mode
The sensor is set at the factory for both outputs to BGS, light on.

1. Place the target object in front of the sensor at the desired position.
2. Teach the switching point for output 1:

- Beginning with the \oplus key, press it simultaneously with the ENTER \odot key. Threshold level is obtained and the output/ LED is updated. Status LED is blinking.
- Using the \oplus / \ominus keys an adjustment of the switching point is possible. The output/LED is updated immediately.
- Pressing the ENTER \odot key for more than 2 seconds or after 2 minutes without any activation of the keys, the sensor returns to normal operation. The status LED is turned off.

3. Teach the switching point for Output 2:

- Beginning with the \ominus key, press it simultaneously with the ENTER \odot key.

Main menu structure

When the ENTER \odot key is pressed for 2 seconds, the sensor switches from the normal mode to the TEACH menu path. The sensor switches to each next menu path when the ENTER \odot key is repeatedly pressed for 2 seconds. In the menu paths, the required parameters can be selected by pressing \ominus and \oplus keys.
i To skip a menu path, you can also press the ENTER key for 4 seconds.
1 [ENTER] Press the ENTER \odot key <1 second
i [[ENTER 2s] Press the ENTER \odot key >2 seconds.

TEACH menu

1.) In the 2-point window evaluation mode, two switching points (A/B and C/D) can be set for each output. In the foreground and background suppression modes, only one switching point (A and C) can be set for each output. Then, only these switching points, A and C, can be set in the TEACH menu path. B and D switching points are not available.
2.) If connector pin 2 is set as an input, only the switching points for Output 1 can be set

SET menu

1.) If connector pin 2 is set as an input, the switch-on/off delay function canonly be set for Output 1. A second switching output is not available.
2.) If the switch-on/off delay is off in the OPTIONS menu path, the switch-on/off delay parameters do not appear in the SET menu path.
3.) The outputs behave differently depending on the switch-off delay functionthat is set in the OPTIONS menu path.
4.) The key lock becomes active again when no keys have been pressed for approx. 5 minutes.

The key lock can be temporarily cancelled by pressing the \oplus and Θ keys for 4 seconds.
5.) The On-delay-setting $t r-i$ or $t r-2$ are only available if the switch-on/off de-lay in the OPTIONS menu path is set to an- i.

OPTIONS menu

1.) If connector pin 2 is set as an input, the type of switch-on/off delay option can only be set for Output 1
2.) If the ECO energy saving mode is on, the display is switched off if no keys are pressed for about 5 minutes. The display is switched on again when any key is pressed.
3.) Firmware 1.10 and higher

OPTIONS menu E3NT-R

Sensors
E3NT-L17
E3NT-L37
E3NT-L27
E3NT-L47
E3NT-LH17
E3NT-LH37

Accessoires (order separately)

Optical data link
E3NT-AL232 2m

Laser alignment aid
E3NT-AP1

Universal mounting bracket E39-EL1

Adapter bracket
E39-EL2

material: stainless steel 1.4305

Replacement bracket for E3N with E3NT
E39-EL3

material: stainless steel 1.4305

Precautions

Mounting Directions

Sensor assembly

Contrary to sensors with single triangulation, E3NT with double triangulation, allows the measured object's direction of motion to be in all three directions. Thus, the rotatory position of the sensor about its optical axis can be chosen freely.

If the light spot is not completely on the same plane as the target object (minimum object size) the distance is not determined and malfunction can occur. If necessary a trigger signal or timer function has to be applied.

The sensor must be fitted so that:

- It is correctly aligned before it is adjusted
- It is protected as far as possible against vibration and shock
- It is protected as far as possible against extraneous incident light
- It is protected as far as possible against damage and soiling
- Electrical connection is possible
- It is as accessible as far as possible for maintenance work
- Operation of the push buttons is possible
- The display is visible.

Sensor's assembly direction
As far as possible, the sensor's optical surface should be aligned parallel to the surface of the measured object.

If the measured object has a glossy, reflecting surface, the sensor's optical system should be tilted by $5 \ldots 10^{\circ}$ in relation to the surface of the measured object.

If there is a reflecting surface in parallel with the sensor's optical axis, this might lead to unstable switching states.
Therefore, reflecting objects within the sensor's optical axis should be avoided.
If this should not be possible, the reflecting surface should not be parallel to the sensor's optical axis, but should be rotated by at least 10°.
Mirror-like objects can cause malfunction inside and outside the sensing range. Avoid mirror-like objects in or close to the optical axis.

Inspection and Maintenance

Cleaning

Do not use any scratching or abrasive cleaning materials. The protective pane of the optical system might get damaged.
The sensor requires no maintenance.
Remove dirt build up from the optical system and the display at regular intervals only with a soft, non abrasive fabric. Residual dirt may have influence on the switching point and display accuracy.

[^0]In the interest of product improvement, specifications are subject to change without notice.

[^0]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

