General-purpose Basic Switch

Z

Best-selling Basic Switch Boasting High Precision and Wide Variety

- A large switching capacity of 15 A with high repeat accuracy.
- A wide range of variations in contact form for your selection: basic, split-contact, maintained-contact, and adjustable contact gap types.
- A series of standard models for micro loads is available.
- A series of molded terminal-type models incorporating safety terminal protective cover is available.

Model Number Structure

Configuration

Basic Models

General-purpose

A variety of actuators is available for a wide range of application.
The contact mechanism of models for micro loads is a crossbar type with gold-alloy contacts, which ensures highly reliable operations for micro loads.
Contact Gap:
H: 0.25 mm (high-sensitivity, micro voltage current load)
G: 0.5 mm (standard)
E: 1.8 mm (high-capacity)
F: 1.0 mm (split-contact models)

Split-contact Models

This type is identical in construction to the general-purpose basic switch except that it has two pairs of simultaneous acting contacts by splitting moving contacts.
Since the moving contacts are connected to a common terminal, either parallel or series connection is possible.

Highly reliable micro load switching is ensured if the model is used as a twin-contact switch.

Maintained-contact Models

The maintained-contact type has a reset button at the bottom of the switch case, in addition to the pushbutton (plunger) located on the opposite side of the reset button. Use these buttons alternately.
Since the Switch has greater pretravel than overtravel, it is suitable for use in reversible control circuits, manual reset circuits, safety limit circuits, and other circuits which are not preferable for automatic resetting. (For further details, refer to individual datasheets.)

Basic Models

Z- $\square \square \square \square-\square$
12345

1. Ratings

01: $\quad 0.1 \mathrm{~A}$ (for micro load)
15: 15 A
2. Contact Gap

H: $\quad 0.25 \mathrm{~mm}$ (high-sensitivity, micro load)
G: $\quad 0.5 \mathrm{~mm}$ (standard)
E: $\quad 1.8 \mathrm{~mm}$ (high-capacity)
3. Actuator

None: Pin plunger
S: Slim spring plunger
D: \quad Short spring plunger
$\mathrm{K}: \quad$ Spring plunger (medium OP)
K3: \quad Spring plunger (high OP)
Q3: \quad Panel mount plunger (low OP)
Q: \quad Panel mount plunger (medium OP)
Q8: \quad Panel mount plunger (high OP)
Q22: Panel mount roller plunger
Q21: Panel mount cross roller plunger
L: Leaf spring (high OF)
L2: Roller leaf spring
W21: Short hinge lever
W: Hinge lever (low OF)
W3: Hinge lever (medium OF)
W32: Hinge lever (high OF)
W4: Low-force hinge lever
W44: Long hinge lever
W78: Low-force wire hinge lever (low OF)
W52: Low-force wire hinge lever (high OF)
W22: Short hinge roller lever
W2: Hinge roller lever
W25: Hinge roller lever (large roller)
W49: Short hinge cross roller lever
W54: Hinge cross roller lever
W2277: Unidirectional short hinge roller lever (Low OF)
M: Reverse hinge lever
M22: Reverse short hinge roller lever
M2: Reverse hinge roller lever
NJ: Flexible rod (high OF)
NJS: Flexible rod (low OF)
4. Degree of Protection

None: General-purpose
55: Drip-proof
A55: Drip-proof (including the terminals)
5. Terminals

None: Solder terminal
B: Screw terminal (with toothed washer)
B5V: Screw terminal with terminal cover (for Z-15G \square A55 only)
Note: For combinations of models, refer to the following pages.

Split-contact Models

Z-10F \square Y-B

$123 \overline{5}$

1. Ratings

10: 10 A
2. Contact Gap

F: 1 mm (high-capacity)
3. Actuator

None: Pin plunger
S: \quad Slim spring plunger
D: Short spring plunger
Q: Panel mount plunger
Q22: Panel mount roller plunger
W: Hinge lever
W22: Short hinge roller lever
W2: Hinge roller lever
M22: Reverse short hinge roller lever
4. Construction

Y: Split-contact models
5. Terminals

None: Solder terminal
B: Screw terminal (with toothed washer)

Maintained-contact Models

Z-15-E \square R
1234

1. Ratings

15: 15 A
2. Contact Gap

E: $\quad 1.8 \mathrm{~mm}$ (High capacity)
3. Actuator

None: Pin plunger
S : \quad Slim spring plunger
W: Hinge lever
4. Structure

R: Maintained-contact models

Ordering Information

List of Models

Basic Models (General-purpose)

Actuator			Standard	High-sensitivity	High-capacity	Micro load
			G (0.5 mm)	H (0.25 mm)	E (1.8 mm)	H (0.25 mm)
Pin plunger	\square	Solder terminal	Z-15G	Z-15H	Z-15E	Z-01H
		Screw terminal	Z-15G-B	Z-15H-B	Z-15E-B	Z-01H-B
Slim spring plunger	且	Solder terminal	Z-15GS	Z-15HS	---	Z-01HS
		Screw terminal	Z-15GS-B	Z-15HS-B	---	Z-01HS-B
Short spring plunger	\square	Solder terminal	Z-15GD	Z-15HD	Z-15ED	Z-01HD
		Screw terminal	Z-15GD-B	Z-15HD-B	Z-15ED-B	Z-01HD-B
Panel mount plunger	Low OP	Solder terminal	Z-15GQ3	---	---	---
		Screw terminal	Z-15GQ3-B			
	Medium OP	Solder terminal	Z-15GQ	Z-15HQ	Z-15EQ	Z-01HQ
		Screw terminal	Z-15GQ-B	Z-15HQ-B	Z-15EQ-B	Z-01HQ-B
	High OP	Solder terminal	Z-15GQ8	---	---	---
		Screw terminal	Z-15GQ8-B			
Panel mount roller plunger	B	Solder terminal	Z-15GQ22	Z-15HQ22	Z-15EQ22	---
		Screw terminal	Z-15GQ22-B	Z-15HQ22-B	Z-15EQ22-B	---
Panel mount cross roller plunger	\square	Solder terminal	Z-15GQ21	Z-15HQ21	Z-15EQ21	---
		Screw terminal	Z-15GQ21-B	Z-15HQ21-B	Z-15EQ21-B	
Leaf spring		Solder terminal	Z-15GL	---	---	---
		Screw terminal	Z-15GL-B			
Roller leaf spring		Solder terminal	Z-15GL2	---	---	---
		Screw terminal	Z-15GL2-B			
Short hinge lever	$0 \cdot \equiv$	Solder terminal	Z-15GW21	---	---	---
		Screw terminal	Z-15GW21-B			
Hinge lever	Low OF	Solder terminal	Z-15GW	Z-15HW	---	---
		Screw terminal	Z-15GW-B	Z-15HW-B	---	---
	Medium OF	Solder terminal	Z-15GW3	---	---	---
		Screw terminal	Z-15GW3-B			
	High OF	Solder terminal	Z-15GW32			---
		Screw terminal	Z-15GW32-B			
Low-force hinge lever		Solder terminal	Z-15GW4	Z-15HW24	---	---
		Screw terminal	Z-15GW4-B	Z-15HW24-B	---	
Low-force wire hinge lever ค -	Low OF	Solder terminal	---	Z-15HW78	---	---
		Screw terminal		Z-15HW78-B	---	
	High OF	Solder terminal	---	Z-15HW52	---	---
		Screw terminal		Z-15HW52-B	---	
Short hinge roller lever		Solder terminal	Z-15GW22	Z-15HW22	Z-15EW22	Z-01HW22
		Screw terminal	Z-15GW22-B	Z-15HW22-B	Z-15EW22-B	Z-01HW22-B
Short hinge cross roller lever		Solder terminal	Z-15GW49	---	---	---
		Screw terminal	Z-15GW49-B			
Hinge roller lever	Parallel	Solder terminal	Z-15GW2	Z-15HW2	---	---
		Screw terminal	Z-15GW2-B	Z-15HW2-B	---	---
	Large roller	Solder terminal	Z-15GW25	---	---	---
		Screw terminal	Z-15GW25-B			

Actuator		Standard	High-sensitivity	High-capacity	Micro load
		G (0.5 mm)	H (0.25 mm)	$\mathrm{E}(1.8 \mathrm{~mm})$	H (0.25 mm)
Hinge cross roller lever	Solder terminal	Z-15GW54	---	--	---
	Screw terminal	Z-15GW54-B			
Unidirectional short hinge roller lever	Solder terminal	Z-15GW2277	---	---	---
	Screw terminal	Z-15GW2277-B			
Reverse hinge lever (see note)	Solder terminal	Z-15GM	---	---	---
	Screw terminal	Z-15GM-B			
Reverse short hinge roller lever (see note)	Solder terminal	Z-15GM22	---	---	---
	Screw terminal	Z-15GM22-B			
Reverse hinge roller lever (see note)	Solder terminal	Z-15GM2	---	---	---
	Screw terminal	Z-15GM2-B			

Note: The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers. Reverse-type models are highly vibration- and shock-resistive because the pin plungers are normally pressed.

Minimum Order Lot

The following models are available at the minimum order lot specified below. Orders must be placed per lot.

Actuator	Standard	High-sensitivity	Minimum order lot (pcs)
	G (0.5 mm)	H (0.25 mm)	
Short spring plunger	Z-15GD-B	---	10
Panel mount plunger	$\begin{aligned} & \mathrm{Z}-15 \mathrm{GQ} \\ & \mathrm{Z}-15 \mathrm{GQ}-\mathrm{B} \\ & \mathrm{Z}-15 \mathrm{GQ} 8-\mathrm{B} \end{aligned}$	---	
Panel mount roller plunger	$\begin{aligned} & \text { Z-15GQ22 } \\ & \text { Z-15GQ22-B } \end{aligned}$	---	
Panel mount cross roller plunger	Z-15GQ21-B	---	
Short hinge lever	Z-15GW21-B	---	
Hinge lever	$\begin{aligned} & \text { Z-15GW } \\ & \text { Z-15GW-B } \end{aligned}$	---	
Low-force hinge lever	Z-15GW4-B	Z-15HW24-B	
Low-force hinge wire lever	---	Z-15HW78-B	
Short hinge roller lever	$\begin{array}{\|l\|} \hline \text { Z-15GW22 } \\ \text { Z-15GW22-B } \\ \hline \end{array}$	---	
Hinge roller lever	$\begin{aligned} & \hline \text { Z-15GW2 } \\ & \text { Z-15GW2-B } \end{aligned}$	---	
Reverse short hinge roller lever	Z-15GM22-B	---	
Reverse hinge roller lever	Z-15GM2-B	---	

Split-contact Models

Actuator			F (1.0 mm)
Pin plunger -		Solder terminal	---
		Screw terminal	Z-10FY-B
Slim spring plunger 且		Solder terminal	---
		Screw terminal	Z-10FSY-B
Short spring plunger		Solder terminal	---
		Screw terminal	Z-10FDY-B
Panel mount plunger	Medium OP	Solder terminal	---
		Screw terminal	Z-10FQY-B
Panel mount roller plunger		Solder terminal	---
		Screw terminal	Z-10FQ22Y-B
Hinge lever	Low OP	Solder terminal	---
		Screw terminal	Z-10FWY-B
Short hinge roller lever		Solder terminal	---
		Screw terminal	Z-10FW22Y-B
Hinge roller lever	Parallel	Solder terminal	---
		Screw terminal	Z-10FW2Y-B
Reverse short hinge roller lever		Solder terminal	---
		Screw terminal	Z-10FM22Y-B

Note: The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers. Reverse-type models are highly vibration- and shock-resistive because the pin plungers are normally pressed.

Maintained-contact Models

Actuator	Maintained-contact model
Pin plunger	Z-15ER
Slim spring plunger	Z-15ESR
Hinge lever	Z-15EWR

Basic Models (Drip-proof Models)

Actuator		Basic model (drip-proof)		
		Standard		Micro load
		G (0.5 mm)		H (0.25 mm)
		Without drip-proof terminal protective cover	With drip-proof terminal protective cover	Without drip-proof terminal protective cover
Pin plunger	Solder terminal	Z-15G55	---	Z-01H55
	Screw terminal	Z-15G55-B	Z-15GA55-B5V	Z-01H55-B
Short spring plunger	Solder terminal	Z-15GD55	---	Z-01HD55
	Screw terminal	Z-15GD55-B		Z-01HD55-B
Spring plunger昌	Solder terminal	Z-15GK55	---	---
	Screw terminal	Z-15GK55-B		
	Solder terminal	Z-15GK355	---	---
	Screw terminal	Z-15GK355-B	Z-15GK3A55-B5V	
Panel mountplunger Medium OP	Solder terminal	Z-15GQ55	---	---
	Screw terminal	Z-15GQ55-B	Z-15GQA55-B5V	
Panel mount roller plunger	Solder terminal	Z-15GQ2255	---	---
	Screw terminal	Z-15GQ2255-B	Z-15GQ22A55-B5V	
Panel mount cross roller plunger	Solder terminal	---	---	---
	Screw terminal	Z-15GQ2155-B	Z-15GQ21A55-B5V	
Leaf spring	Solder terminal	Z-15GL55	---	---
	Screw terminal	Z-15GL55-B		
Roller leaf spring	Solder terminal	Z-15GL255	---	---
	Screw terminal	Z-15GL255-B		
Short hinge lever	Solder terminal	Z-15GW2155	---	---
	Screw terminal	Z-15GW2155-B		

Actuator		Basic model (drip-proof)		
		Standard		Micro load
		$\mathrm{G}(0.5 \mathrm{~mm})$		H (0.25 mm)
		Without drip-proof terminal protective cover	With drip-proof terminal protective cover	Without drip-proof terminal protective cover
Long hinge lever	Solder terminal	Z-15GW4455	---	---
	Screw terminal	Z-15GW4455-B	Z-15GW44A55-B5V	
Hinge lever	Solder terminal	Z-15GW55	---	---
	Screw terminal	Z-15GW55-B	Z-15GWA55-B5V	
Short hinge roller lever	Solder terminal	Z-15GW2255	---	Z-01HW2255
	Screw terminal	Z-15GW2255-B	Z-15GW22A55-B5V	Z-01HW2255-B
Hinge roller lever Parallel	Solder terminal	Z-15GW255	---	---
	Screw terminal	Z-15GW255-B	Z-15GW2A55-B5V	
Unidirectional short hinge roller lever	Solder terminal	Z-15GW227755	---	---
	Screw terminal	Z-15GW227755-B	Z-15GW2277A55-B5V	
Reverse hinge lever (see note 1)	Solder terminal	Z-15GM55	---	---
	Screw terminal	Z-15GM55-B		
Reverse short hinge roller lever (see note 1)	Solder terminal	Z-15GM2255	---	---
	Screw terminal	Z-15GM2255-B		
Reverse hinge roller lever (see note 1)	Solder terminal	Z-15GM255	---	---
	Screw terminal	Z-15GM255-B		
Flexible rod (coil spring) (see note 2)	Solder terminal	Z-15GNJ55	---	---
	Screw terminal	Z-15GNJ55-B		

Note: 1. The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers.
2. The tip is made of resin.

Minimum Order Lot

The following models are available at the minimum order lot specified below. Orders must be placed per lot.

Actuator		dard	High-sensitivity	Minimum order lot
	G (0.5 mm)		H (0.25 mm)	
Short spring plunger	Z-15GD55-B	---	---	10
Spring plunger	Z-15GK55-B	---	---	
Hinge lever	Z-15GW4455-B Z-15GW55 Z-15GW55-B	---	---	
Short hinge roller lever	$\begin{aligned} & \text { Z-15GW2255 } \\ & \text { Z-15GW2255-B } \end{aligned}$	---	---	
Hinge roller lever	Z-15GW255-B	---	---	
Flexible rod (coil spring)	Z-15GNJ55-B	---	---	
Flexible rod (steel wire)	---	---	Z-15HNJS55-B	

Basic Models (Drip-proof High-sensitivity Models)

Actuator		High-sensitivity	
			H (0.25 mm)
Flexible rod (steel wire)	Solder terminal	Z-15HNJS55	
	Screw terminal	Z-15HNJS55-B	

Specifications

- Approved Standards

Agency	Standard	File No.
UL	UL508	E41515
CSA	CSA C22.2 No. 55	LR21642
TÜV Rheinland	EN61058-1	R9451585

Approved Standard Ratings

UL508 (File No. E41515)
 CSA C22.2 No. 55 (File No. LR21642)

Rated voltage	Z-15	Z-10F	Z-01H
125 VAC	15 A $1 / 8 \mathrm{HP}$	6 A $1 / 10 \mathrm{HP}$	0.1 A
250 VAC	$15 \mathrm{~A} \mathrm{1/4} \mathrm{HP}$	6 A 1/8 HP	---
480 VAC	15 A	6 A	---
30 VDC	---	---	0.1 A
125 VDC	0.5 A	0.6 A	---
250 VDC	0.25 A	0.3 A	---

EN (EN61058-1)

Rated voltage	Z-15H \square-B	Z-15G \square-B	Z-01H \square-B
250 VAC	15 A	15 A	---
125 VAC	---	--	0.1 A
30 VDC	---	--	0.1 A

Note: Consult with OMRON about approved part numbers by standards.

Ratings

Z-15 (Except Micro Load and Flexible Rod Models)

Model	Rated voltage	Non-inductive load				Inductive load			
		Resistive load		Lamp load		Inductive load		Motor load	
		NC	NO	NC	NO	NC	NO	NC	NO
G, H, E	$\begin{array}{\|l\|} \hline 125 \text { VAC } \\ 250 \text { VAC } \\ 500 \text { VAC } \end{array}$	$\begin{aligned} & 15 \text { (10) A (see note) } \\ & 15 \text { (10) A (see note) } \\ & 10 \mathrm{~A} \end{aligned}$		$\begin{aligned} & \hline 3 \mathrm{~A} \\ & 2.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.25 \mathrm{~A} \\ & 0.75 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15 \text { (10) A (see note) } \\ & 15 \text { (10) A (see note) } \\ & 6 \mathrm{~A} \end{aligned}$		$\begin{aligned} & \hline 5 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & 0.75 \mathrm{~A} \end{aligned}$
G	8 VDC 14 VDC 30 VDC 125 VDC 250 VDC	$\begin{aligned} & \hline 15 \mathrm{~A} \\ & 15 \mathrm{~A} \\ & 6 \mathrm{~A} \\ & 0.5 \mathrm{~A} \\ & 0.25 \mathrm{~A} \end{aligned}$		$\begin{array}{\|l\|} \hline 3 \mathrm{~A} \\ 3 \mathrm{~A} \\ 3 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0.25 \mathrm{~A} \end{array}$	$\begin{aligned} & \hline 1.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & 0.5 \mathrm{~A} \\ & 0.25 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 15 \mathrm{~A} \\ 10 \mathrm{~A} \\ 5 \mathrm{~A} \\ 0.05 \mathrm{~A} \\ 0.03 \mathrm{~A} \\ \hline \end{array}$		$\begin{aligned} & \hline 5 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & 0.05 \mathrm{~A} \\ & 0.03 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.5 \mathrm{~A} \\ & 2.5 \mathrm{~A} \\ & 2.5 \mathrm{~A} \\ & 0.05 \mathrm{~A} \\ & 0.03 \mathrm{~A} \end{aligned}$
H	8 VDC 14 VDC 30 VDC 125 VDC 250 VDC	$\begin{aligned} & 15 \mathrm{~A} \\ & 15 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$		$\begin{array}{\|l\|} \hline 3 \mathrm{~A} \\ 3 \mathrm{~A} \\ 2 \mathrm{~A} \\ 0.4 \mathrm{~A} \\ 0.2 \mathrm{~A} \end{array}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & 1.4 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 15 \mathrm{~A} \\ 10 \mathrm{~A} \\ 1 \mathrm{~A} \\ 0.03 \mathrm{~A} \\ 0.02 \mathrm{~A} \end{array}$		$\begin{array}{\|l\|} \hline 5 \mathrm{~A} \\ 5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 0.03 \mathrm{~A} \\ 0.02 \mathrm{~A} \end{array}$	$\begin{aligned} & 2.5 \mathrm{~A} \\ & 2.5 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 0.03 \mathrm{~A} \\ & 0.02 \mathrm{~A} \end{aligned}$
E	8 14 VDC 14 30 VDC 125 VDC 250 VDC	$\begin{aligned} & \hline 15 \mathrm{~A} \\ & 15 \mathrm{~A} \\ & 15 \mathrm{~A} \\ & 0.75 \mathrm{~A} \\ & 0.3 \mathrm{~A} \end{aligned}$		$\begin{array}{\|l\|} \hline 3 \mathrm{~A} \\ 3 \mathrm{~A} \\ 3 \mathrm{~A} \\ 0.75 \mathrm{~A} \\ 0.3 \mathrm{~A} \end{array}$	$\begin{aligned} & \hline 1.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & 0.75 \mathrm{~A} \\ & 0.3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 15 \mathrm{~A} \\ & 15 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$		$\begin{aligned} & \hline 5 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.5 \mathrm{~A} \\ & 2.5 \mathrm{~A} \\ & 2.5 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$

Note: Figures in parentheses are for the Z-15HW52 and Z-15HW78(-B) models, the AC ratings of these models are 125 and 250 V only.

Z-15 (Flexible Rod Models)

Rated voltage	Non-inductive Ioad				Inductive load			
	Resistive load		Lamp load		Inductive load		Motor load	
	NC	NO	NC	NO	NC	NO	NC	NO
$\begin{aligned} & 125 \text { VAC } \\ & 250 \text { VAC } \end{aligned}$	15 A		$\begin{aligned} & \hline 2 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{~A} \\ & 0.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 7 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$
8 VDC 14 VDC 30 VDC 125 VDC 250 VDC	$\begin{aligned} & \hline 15 \mathrm{~A} \\ & 15 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$		$\begin{aligned} & \hline 2 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~A} \\ & 7 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 0.03 \mathrm{~A} \\ & 0.02 \mathrm{~A} \end{aligned}$		$\begin{array}{\|l\|} \hline 3 \mathrm{~A} \\ 3 \mathrm{~A} \\ 1 \mathrm{~A} \\ 0.03 \mathrm{~A} \\ 0.02 \mathrm{~A} \end{array}$	$\begin{aligned} & \hline 1.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & 0.5 \mathrm{~A} \\ & 0.03 \mathrm{~A} \\ & 0.02 \mathrm{~A} \end{aligned}$

Z-01H

Rated voltage	Resistive load	
	NC	NO
$\mathbf{1 2 5}$ VAC	0.1 A	
$\mathbf{8}$ VDC	0.1 A	
14 VDC	0.1 A	
$\mathbf{3 0}$ VDC	0.1 A	

Z-10F

Model	Rated voltage	Non-inductive load				Inductive load			
		Resistive load		Lamp load		Inductive load		Motor load	
		NC	NO	NC	NO	NC	NO	NC	NO
Series connection	$\begin{aligned} & 125 \text { VAC } \\ & 250 \text { VAC } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 4 \mathrm{~A} \\ & 2.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$	6 A		$\begin{aligned} & \hline 5 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$
	$\begin{aligned} & 30 \text { VDC } \\ & 125 \text { VDC } \\ & 250 \text { VDC } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 0.6 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 4 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 0.6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 0.6 \mathrm{~A} \end{aligned}$	6 A 0.1 A 0.05 A		6 A 0.1 A 0.05 A	$\begin{aligned} & 3 \mathrm{~A} \\ & 0.1 \mathrm{~A} \\ & 0.05 \mathrm{~A} \end{aligned}$
Parallel connection	$\begin{aligned} & 125 \text { VAC } \\ & 250 \text { VAC } \end{aligned}$	$\begin{aligned} & 6 \mathrm{~A} \\ & 6 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 3 \mathrm{~A} \\ & 2.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} \\ & 4 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 4 \mathrm{~A} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$
	$\begin{aligned} & 30 \text { VDC } \\ & 125 \text { VDC } \\ & 250 \text { VDC } \end{aligned}$	$\begin{aligned} & 6 \mathrm{~A} \\ & 0.6 \mathrm{~A} \\ & 0.3 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 4 \mathrm{~A} \\ & 0.6 \mathrm{~A} \\ & 0.3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A} \\ & 0.6 \mathrm{~A} \\ & 0.3 \mathrm{~A} \end{aligned}$	4 A 0.1 A 0.05 A		6 A 0.1 A 0.05 A	$\begin{array}{\|l\|} \hline 3 \mathrm{~A} \\ 0.1 \mathrm{~A} \\ 0.05 \mathrm{~A} \end{array}$

Note: 1. The above current ratings are the values of the steady-state current.
2. Inductive load has a power factor of 0.4 min . (AC) and a time constant of 7 ms max. (DC).
3. Lamp load has an inrush current of 10 times the steady-state current.
4. Motor load has an inrush current of 6 times the steady-state current.
5. The normally closed and normally open ratings of reverse hinge lever models are opposite to each other.
6. The AC ratings of molded terminals are 125 and 250 V only.
7. The ratings values apply under the following test conditions:

Ambient temperature: $20 \pm 2^{\circ} \mathrm{C}$
Ambient humidity: $65 \pm 5 \%$
Operating frequency: 20 operations/min

Characteristics

Item	Basic (except micro load and flexible rod)/ maintained contact $\mathrm{Z}-15$	$\begin{gathered} \text { Basic } \\ \text { (micro load) } \\ \mathrm{Z}-01 \mathrm{H} \end{gathered}$	$\begin{gathered} \text { Basic } \\ \text { (flexible rod) } \\ \mathrm{Z}-15 \end{gathered}$	Split-contact Z-10F
Operating speed (see note)	0.01 mm to $1 \mathrm{~m} / \mathrm{s}$ (see note 1)		1 mm to $1 \mathrm{~m} / \mathrm{s}$	0.1 mm to $1 \mathrm{~m} / \mathrm{s}$ (see note 1)
Operating frequency	Mechanical: 240 operations/min Electrical: 20 operations/min		Mechanical: 120 operations/min Electrical: 20 operations $/ \mathrm{min}$	$\begin{array}{ll}\text { Mechanical: } 240 \text { operations/min } \\ \text { Electrical: } & 20 \text { operations } / \mathrm{min}\end{array}$
Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)			
Contact resistance	$15 \mathrm{~m} \Omega$ max. (initial value)	$50 \mathrm{~m} \Omega$ max. (initial value)	$15 \mathrm{~m} \Omega$ max. (initial value)	$25 \mathrm{~m} \Omega$ max. (initial value)
Dielectric strength	Between contacts of same polarity Contact gap G: 1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min Contact gap H: 600 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min Contact gap E: $1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min Between current-carrying metal parts and ground, and between each terminal and non-current-carrying metal parts 2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min		Between contacts of same polarity Contact gap G: 1,000 VAC, 50/ 60 Hz for 1 min Contact gap H: 600 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min Between current-carrying metal parts and ground, and between each terminal and non-current-carrying metal parts 2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	Between contacts of same polarity Contact gap F: 1,500 VAC, 50/ 60 Hz for 1 min Between current-carrying metal parts and ground, and between each terminal and non-current-carrying metal parts 2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min
Vibration resistance	Malfunction: 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude (see note 5)		Malfunction: 10 to $20 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude (see note 5)	Malfunction: 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude (see note 5)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ $\{$ approx. 100 G$\}$ Malfunction: $:$ $300 \mathrm{~m} / \mathrm{s}^{2}$ $\{$ approx. 30G $\}$ max. (see note 2, 5)		Destruction: $:$ $1,000 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. $100 \mathrm{G}\} \mathrm{max}$. Malfunction: $:$ $50 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 5 G$\}$ (see note 5)	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. $100 \mathrm{G}\} \mathrm{max}$. Malfunction: $:$ $300 \mathrm{~m} / \mathrm{s}^{2}$. approx. 30 G$\}$ (see note 3,5)
Durability	Mechanical: Contact gap G, H:20,000,000 operations min. (see note 4) Contact gap E: 300,000 operations Electrical: Contact gap G, H:500,000 operations min. Contact gap E: 100,000 operations min.		Mechanical: $1,000,000$ operations min. Electrical: min.	Mechanical: 500,000 operations min. (see note 1) Electrical: 100,000 operations min.
Degree of protection	General-purpose: IP00 Drip-proof: IP62			
Degree of protection against electric shock	Class I			
Proof tracking index (PTI)	175			
Switch category	D (IEC335-1)			
Ambient temperature	Operating: General-purpose: $-25^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (with no icing) Drip-proof: $\quad-15^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (with no icing)			
Ambient humidity	Operating: General-purpose: 35% to 85% Drip-proof: 35% to 95%			
Weight	Approx. 22 to 58 g		Approx. 42 to 48 g	Approx. 34 to 61 g

Note: 1. The values are for the plunger models. (For the lever models, the values are at the plunger section.) (Contract your OMRON representative for other models.)
2. The values are for the $Z-15 G$ pin plunger.
3. The values are for the Z-10FY-B.
4. The values are for the pin plunger. The durability for models other than the pin plunger is $10,000,000 \mathrm{~min}$.
5. Malfunction: 1 ms max.

Contacts Specification

Item		$\mathbf{Z - 1 5}$	Z-01H	Z-10F
Contacts	Shape	Rivet	Single crossbar	Rivet
	Material	Silver alloy	Gold alloy	Silver alloy
	NC	30 A max.	$0.1 \mathrm{~A} \mathrm{max}$.	$40 \mathrm{~A} \mathrm{max}$.
	NO	15 A max.	$0.1 \mathrm{~A} \mathrm{max}$.	$20 \mathrm{~A} \mathrm{max}$.

\square Contact Form

Basic Models

General-purpose

Contact Form (SPDT)

Note: The Z-15GM is a reversible model and the NO and NC positions are reversed.

Split-contact Models

Contact Form (Split-contact)

Connection Example

Series Connection

Parallel Connection

Maintained-contact Models
Contact Form (Maintained-contact)

Engineering Data

Mechanical Durability

Z-15G

Electrical Durability

Nomenclature

Drip-proof Construction

Without Terminal Protective Cover

With Terminal Protective Cover

Rubber boot (weather-resistive chloroprene is used)

Dimensions

Note: 1. Unless otherwise indicated, all units are in millimeters.
2. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Dimensions and Operating Characteristics

Basic Models (General-purpose) \& Split-contact Models

The models, illustrations, and graphics are for screw-terminal models (-B). The "-A" at the end of the model number for solder terminal models has been omitted. For details of the terminals, refer to Terminals above.

Pin Plunger

Note: Stainless-steel plunger

	Z-15G-B	Z-15H-B	Z-15E-B	Z-01H-B	Z-10FY-B
OF	$\begin{aligned} & 2.45 \text { to } 3.43 \mathrm{~N} \\ & \{250 \text { to } 350 \mathrm{gf}\} \end{aligned}$	$\begin{aligned} & 1.96 \text { to } 2.75 \mathrm{~N} \\ & \{200 \text { to } 280 \mathrm{gf}\} \end{aligned}$	$\begin{aligned} & 6.12 \text { to } 7.85 \mathrm{~N} \\ & \{625 \text { to } 800 \mathrm{gf}\} \end{aligned}$	2.45 N \{250 gf max.	$\begin{aligned} & 4.46 \text { to } 7.26 \mathrm{~N} \\ & \{455 \text { to } 740 \mathrm{gf}\} \end{aligned}$
RF min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	1.12 N \{114 gf\}	1.12 N \{114 gf	$0.78 \mathrm{~N}\{80 \mathrm{gf}\}$	1.12 N \{114 gf
PT max.	0.4 mm	0.3 mm	0.8 mm	0.5 mm	0.8 mm
OT min.	0.13 mm				
MD max.	0.05 mm	0.025 mm	0.13 mm	0.04 mm	0.1 mm
OP	$15.9 \pm 0.4 \mathrm{~mm}$				

Slim Spring Plunger

Z-15GS-B, Z-15HS-B, Z-01HS-B, Z-10FSY-B

Note: Stainless-steel plunger (flat, 1R chamfered)

	Z-15GS-B	Z-15HS-B	Z-01HS	Z-10FSY-B
OF	2.45 to 3.43 N	1.96 to 2.79 N	$2.45 \mathrm{~N}\{250 \mathrm{gf}\}$ max.	4.46 to 7.26 N
	$\{250$ to 350 gf$\}$	$\{200$ to 285 gf$\}$		$\{455$ to 740 gf$\}$
RF min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$0.78 \mathrm{~N}\{80 \mathrm{gf}\}$	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	0.4 mm	0.3 mm	0.5 mm	0.8 mm
OT \min.	1.6 mm	1.6 mm	1.6 mm	1.6 mm
MD max.	0.05 mm	0.025 mm	0.05 mm	0.1 mm
OP	$28.2 \pm 0.5 \mathrm{~mm}$			

Short Spring Plunger

Z-15GD-B, Z-01HD-B Z-15HD-B, Z-10FDY-B Z-15ED-B

Note: Plated iron plunger

	Z-15GD-B	Z-15HD-B	Z-15ED-B	Z-01HD-B	Z-10FDY-B
OF	2.45 to 3.43 N	1.96 to 2.79 N	6.13 to 7.85 N	$2.45 \mathrm{~N}\{250 \mathrm{gf}\} \mathrm{max}$.	4.46 to 7.26 N
	$\{250$ to 350 gf$\}$	$\{200$ to 285 gf$\}$	$\{625 \mathrm{to} 800 \mathrm{gf}\}$		$\{455 \mathrm{to} 740 \mathrm{gf}\}$
RF min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$0.78 \mathrm{~N}\{80 \mathrm{gf}\}$	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	0.4 mm	0.3 mm	0.8 mm	0.5 mm	0.8 mm
OT min.	1.6 mm	1.6 mm	1.6 mm	1.6 mm	
MD max.	0.05 mm	0.025 mm	0.13 mm	0.1 mm	
OP	$21.5 \pm 0.5 \mathrm{~mm}$				

Panel Mount Plunger

Z-15GQ-B, Z-01HQ-B Z-15HQ-B, Z-10FQY-B Z-15EQ-B

Z-15GQ3-B

Note: 1. Stainless-steel plunger
2. Imperfect screw part with a maximum length of 1.5 mm .

Z-15GQ8-B

2. Imperfect screw part with a maximum length of 1.5 mm .

Z-15GQ3-B	Z-15GQ8-B
2.45 to 3.43 N	2.45 to 3.43 N
$\{250$ to 350 gf$\}$	$\{250$ to 350 gf$\}$
$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
4.2 mm	0.5 mm
2.5 mm	5.5 mm
2.2 mm	0.05 mm
$18.8 \pm 0.8 \mathrm{~mm}$	$32.5 \pm 1 \mathrm{~mm}$

Panel Mount Roller Plunger

Z-15GQ22-B, Z-15EQ22-B Z-15HQ22-B, Z-10FQ22Y-B

12.7 dia. $\times 4.8$ (stainless-steel roller)

Note: Imperfect screw part with a maximum length of 1.5 mm .

	Z-15GQ22-B	Z-15HQ22-B	Z-15EQ22-B	Z-10FQ22Y-B
OF	2.45 to 3.43 N	1.96 to 2.79 N	6.13 to 7.85 N	4.46 to 7.26 N
	$\{250$ to 350 gf$\}$	$\{200$ to 285 gf$\}$	$\{625$ to 800 gf$\}$	$\{455$ to 740 gf$\}$
RF min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	0.4 mm	0.3 mm	0.8 mm	1 mm
OT min.	3.58 mm	3.58 mm	3.58 mm	3.55 mm
MD max.	0.05 mm	0.025 mm	0.13 mm	0.1 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$			

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.

Panel Mount Cross Roller Plunger

Z-15GQ21-B, Z-15HQ21-B,
Z-15EQ21-B

12.7 dia. $\times 4.8$ (stainless-steel roller)

maximum length of 1.5 mm

	Z-15GQ21-B	Z-15HQ21-B	Z-15EQ21-B
OF	2.45 to 3.43 N	1.96 to 2.79 N	6.13 to 7.85 N
	$\{250$ to 350 gf$\}$	$\{200$ to 285 gf$\}$	$\{625$ to 800 gf$\}$
RF min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	0.4 mm	0.3 mm	0.8 mm
OT min.	3.58 mm	3.58 mm	3.58 mm
MD max.	0.05 mm	0.025 mm	0.13 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$		

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.

Leaf Spring

Z-15GL-B

OF max.	$1.38 \mathrm{~N}\{141 \mathrm{gf}\}$
RF min.	$0.14 \mathrm{~N}\{14 \mathrm{gf}\}$
OT min.	1.6 mm (see note)
MD max.	1.3 mm
FP max.	20.6 mm
OP	$17.4 \pm 0.8 \mathrm{~mm}$

Note: When operating, be sure not to exceed 1.6 mm .

Roller Leaf Spring
Z-15GL2-B

OF max.	$1.38 \mathrm{~N}\{141 \mathrm{gf}\}$
RF min.	$0.14 \mathrm{M}\{14 \mathrm{gf}\}$
OT min.	1.6 mm (see note)
MD max.	1.3 mm
FP max.	31.8 mm
OP	$28.6 \pm 0.8 \mathrm{~mm}$

Note: When operating, be sure not to exceed 1.6 mm .

Short Hinge Lever
Z-15GW21-B

OF max.	$1.57 \mathrm{~N}\{160 \mathrm{gf}\}$
RF min.	$0.27 \mathrm{~N}\{28 \mathrm{gf}\}$
OT min.	2 mm
MD max.	1 mm
FP max.	24.8 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Hinge Lever
Z-15GW-B, Z-15GW32-B
Z-15HW-B, Z-10FWY-B
Z-15GW3-B (Lever Length: 56R) (see note)

Note: The external dimensions of the actuator vary.

	Z-15GW-B	Z-15HW-B	Z-15GW32-B	Z-10FWY-B	Z-15GW3-B
OF max.	0.69 N \{70 gf $\}$	0.66 N \{67 gf $\}$	1.47 to 1.96 N \{150 to 200 gf\}	$0.88 \mathrm{~N}\{90 \mathrm{gf}\}$	0.78 N \{80 gf $\}$
RF min.	0.14 N \{14 gf $\}$	0.14 N \{14 gf $\}$	$0.92 \mathrm{~N}\{94 \mathrm{gf}\}$	$0.14 \mathrm{~N}\{14 \mathrm{gf}\}$	$0.15 \mathrm{~N}\{15.5 \mathrm{gf}\}$
OT min.	5.6 mm	5.6 mm	5.6 mm	5.6 mm	4.8 mm
MD max.	1.27 mm	0.63 mm	1.27 mm	2.4 mm	1.12 mm
FP max.	28.2 mm	27.4 mm	28.2 mm	29.8 mm	27.2 mm
OP	$19 \pm 0.8 \mathrm{~mm}$				

Low-force Hinge Lever

Low-force Wire Hinge Lever

Z-15HW52-B

Z-15HW78-B

OF max.	$58.8 \mathrm{mN}\{6 \mathrm{gf}\}$
RF min.	$4.90 \mathrm{mN}\{0.5 \mathrm{gf}\}$
PT max.	19.8 mm
OT min.	10 mm
MD max.	2 mm
OP	$19.8 \pm 1.6 \mathrm{~mm}$

OF max.	$58.8 \mathrm{mN}\{6 \mathrm{gf}\}$
RF min.	$4.90 \mathrm{mN}\{0.5 \mathrm{gf}\}$
PT max.	8.3 mm
OT min.	5.6 mm
MD max.	0.65 mm
OP	$19 \pm 1 \mathrm{~mm}$

OF max.	$39.2 \mathrm{mN}\{4 \mathrm{gf}\}$
RF min.	$2.94 \mathrm{mN}\{0.3 \mathrm{gf}\}$
PT max.	10 mm
OT min.	6 mm
MD max.	3 mm
OP	$20 \pm 1 \mathrm{~mm}$

Note: The AC rating is 10 A at 125 or 250 V.

Short Hinge Roller Lever

Z-15GW22-B, Z-01HW22-B
Z-15HW22-B, Z-10FW22Y-B (see note) Z-15EW22-B, Z-15GW2-B
Z-15HW2-B (see note), Z-10FW2Y-B (see note) (Lever Length: 48.5R) (see note)

Note: The external dimensions of the actuator vary.

	Z-15GW22-B	Z-15HW22-B	Z-15EW22-B	Z-01HW22-B	Z-10FW22Y-B	Z-15GW2-B	Z-15HW2-B	Z-10FW2Y-B
OF max.	1.57 N	1.47 N	1.94 N	1.57 N	2.45 N	0.98 N	0.84 N	1.27 N
	$\{160 \mathrm{gf}\}$	$\{150 \mathrm{gf}\}$	$\{198 \mathrm{gf}\}$	$\{160 \mathrm{gf}\}$	$\{250 \mathrm{gf}\}$	$\{100 \mathrm{gf}\}$	$\{86 \mathrm{gf}\}$	$\{130 \mathrm{gf}\}$
RF min.	0.41 N	0.41 N	0.41 N	0.27 N	0.34 N	0.22 N	0.22 N	0.22 N
	$\{42 \mathrm{gf}\}$	$\{42 \mathrm{gf}\}$	$\{42 \mathrm{gf}\}$	$\{28 \mathrm{gf}\}$	$\{35 \mathrm{gf}\}$	$\{22 \mathrm{gf}\}$	$\{22 \mathrm{gf}\}$	$\{22 \mathrm{gf}\}$
OT min.	2.4 mm	4 mm	4 mm					
MD max.	0.5 mm	0.45 mm	1.3 mm	0.5 mm	1 mm	1.02 mm	0.6 mm	2 mm
FP max.	32.5 mm	35.1 mm	32.5 mm	34.8 mm	36.5 mm		37.4 mm	
OP	$30.2 \pm 0.4 \mathrm{~mm}$		$30.2 \pm 0.4 \mathrm{~mm}$	$30.2 \pm 0.4 \mathrm{~mm}$	$30.2 \pm 0.4 \mathrm{~mm}$	$30.2 \pm 0.8 \mathrm{~mm}$		

Note: The external dimensions of the actuator vary.

Z-15GW25-B

OF max.	$0.98 \mathrm{~N}\{100 \mathrm{gf}\}$
RF min.	$0.21 \mathrm{~N}\{21 \mathrm{gf}\}$
OT min.	4 mm
MD max.	1.6 mm
FP max.	47.5 mm
OP	$41.2 \pm 0.8 \mathrm{~mm}$

Unidirectional Short Hinge Roller Lever

Z-15GW2277-B

OF max.	$1.67 \mathrm{~N}\{170 \mathrm{gf}\}$
RF min.	$0.41 \mathrm{~N}\{42 \mathrm{gf}\}$
OT min.	2.4 mm
MD max.	0.51 mm
FP max.	43.6 mm
OP	$41.3 \pm 0.8 \mathrm{~mm}$

Reverse Hinge Lever

Note: The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers. Reverse-type models are highly vibration- and shock-resistive because the pin plungers are normally pressed.

OF max.	$1.67 \mathrm{~N}\{170 \mathrm{gf}\}$
RF min.	$0.27 \mathrm{~N}\{28 \mathrm{gf}\}$
OT min.	5.6 mm
MD max.	0.89 mm
FP max.	23.8 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Reverse Short Hinge Roller Lever

Note: The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers. Reverse-type models are highly vibration- and shock-resistive because the pin plungers are normally pressed.

Z-15GM22-B,

Z-10FM22Y-B

Model	Z-15GM22-B	Z-10FM22Y-B
OF max.	5.28 N	6.37 N
	$\{538 \mathrm{gf}\}$	$\{650 \mathrm{gf}\}$
RF min.	1.67 N	1.67 N
OT min.	$\{170 \mathrm{gf}\}$	$\{170 \mathrm{gf}\}$
MD max.	2 mm	2 mm
FP max.	31.8 mm	0.56 mm
OP	$29.4 \pm 0.4 \mathrm{~mm}$	33 mm
OP	$29.4 \pm 0.4 \mathrm{~mm}$	

Reverse Hinge Roller Lever

Note: The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers. Reverse-type models are highly vibration- and shock-resistive because the pin plungers are normally pressed.

OF max.	$2.35 \mathrm{~N}\{240 \mathrm{gf}\}$
RF min.	$0.55 \mathrm{~N}\{56 \mathrm{gf}\}$
OT min.	4 mm
MD max.	0.64 mm
FP max.	35 mm
OP	$30.2 \pm 0.8 \mathrm{~mm}$

Basic Models (Drip-proof) without Terminal Protective Cover

Pin Plunger
Z-15G55-B
Z-01H55-B

Note: Stainless-steel plunger

Short Spring Plunger

Spring Plunger
Z-15GK55-B

Note: Stainless-steel plunger

Z-15GK355-B

Note: Stainless-steel plunger

Model	Z-15G55-B	Z-01H55-B
OF	2.45 to 4.22 N	3.43 N
	$\{250 \mathrm{to}$	$\{350 \mathrm{gf}\}$ max.
	$431 \mathrm{gf}\}$	
RF min.	1.12 N	0.78 N
	$\{114 \mathrm{gf}\}$	$\{80 \mathrm{gf}\}$
PT max.	2.2 mm	2.2 mm
OT min.	0.13 mm	0.13 mm
MD max.	0.06 mm	0.06 mm
OP	$15.9 \pm 0.4 \mathrm{~mm}$	

Model	Z-15GD55-B	Z-01HD55-B
OF max.	5.30 N	3.63 N
	$\{541 \mathrm{gf}\}$	$\{370 \mathrm{gf}\}$
RF min.	1.12 N	0.78 N
PT max.	$\{114 \mathrm{gf}\}$	$\{80 \mathrm{gf}\}$
PT min.	1.8 mm	1.9 mm
MD max.	0.06 mm	1.6 mm
OP	$21.5 \pm 0.5 \mathrm{~mm}$	

OF max.	$5.30 \mathrm{~N}\{541 \mathrm{gf}\}$
RF \min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	2.3 mm
OT min.	1.6 mm
MD max.	0.06 mm
OP	$28.2 \pm 0.5 \mathrm{~mm}$

OF max.	$5.30 \mathrm{~N}\{541 \mathrm{gf}\}$
RF \min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	2.4 mm
OT min.	3.5 mm
MD max.	0.06 mm
OP	$37.8 \pm 1.2 \mathrm{~mm}$

Panel Mount Plunger

OF max.	$5.30 \mathrm{~N}\{541 \mathrm{gf}\}$
RF min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	1.8 mm
OT min.	5.5 mm
MD max.	0.06 mm
OP	$21.8 \pm 0.8 \mathrm{~mm}$

2. Imperfect screw part with a maximum length of 1.5 mm .

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.

Panel Mount Roller Plunger

OF max.	$5.30 \mathrm{~N}\{541 \mathrm{gf}\}$
RF min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	1.8 mm
OT min.	3.58 mm
MD max.	0.06 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.
Panel Mount Cross Roller Plunger

OF max.	$5.30 \mathrm{~N}\{541 \mathrm{gf}\}$
RF min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	1.8 mm
OT min.	3.58 mm
MD max.	0.06 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.

Leaf Spring

Z-15GL55-B

Roller Leaf Spring
Z-15GL255-B

OF max.	$1.96 \mathrm{~N}\{200 \mathrm{gf}\}$
RF min.	$0.14 \mathrm{~N}\{14 \mathrm{gf}\}$
OT min.	1.6 mm
MD max.	1.3 mm
FP max.	20.6 mm
OP	$17.5 \pm 0.8 \mathrm{~mm}$

Note: When operating, be sure not to exceed 1.6 mm .

OF max.	$1.96 \mathrm{~N}\{200 \mathrm{gf}\}$
RF min.	$0.14 \mathrm{~N}\{14 \mathrm{gf}\}$
OT min.	1.6 mm
MD max.	1.3 mm
FP max.	31.8 mm
OP	$28.6 \pm 0.8 \mathrm{~mm}$

Note: When operating, be sure not to exceed 1.6 mm .

Short Hinge Lever

Z-15GW2155-B

Long Hinge Lever
Z-15GW4455-B

OF max.	0.88 N
	$\{90 \mathrm{gf}\}$
RF min.	0.14 N
	$\{14 \mathrm{gf}\}$
OT min.	5.6 mm
MD max.	3.5 mm
FP max.	33 mm
OP	$19 \pm 1.2 \mathrm{~mm}$

Hinge Lever

OF max.	$0.98 \mathrm{~N}\{100 \mathrm{gf}\}$
RF min.	$0.14 \mathrm{~N}\{14 \mathrm{gf}\}$
OT min.	5.6 mm
MD max.	2 mm
FP max.	28.2 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Short Hinge Roller Lever

Model	Z-15GW2255-B	Z-01HW2255-B
OF max.	1.96 N	1.96 N
	$\{200 \mathrm{gf}\}$	$\{200 \mathrm{gf}\}$
RF min.	0.41 N	0.27 N
	$\{42 \mathrm{gf}\}$	$\{28 \mathrm{gf}\}$
OT min.	2.4 mm	2.4 mm
MD max.	0.8 mm	0.8 mm
FP max.	32.9 mm	
OP	$30.2 \pm 0.4 \mathrm{~mm}$	

Hinge Roller Lever

9.5 dia. $\times 4$ (plastic roller)

OF max.	$1.27 \mathrm{~N}\{130 \mathrm{gf}\}$
RF min.	$0.21 \mathrm{~N}\{21 \mathrm{gf}\}$
OT min.	4 mm
MD max.	1.6 mm
FP max.	36.5 mm
OP	$30.2 \pm 0.8 \mathrm{~mm}$

Note: Stainless-steel lever

Unidirectional Short Hinge Roller Lever

9.5 dia. $\times 4$ (plastic roller)

OF max.	$1.77 \mathrm{~N}\{181 \mathrm{gf}\}$
RF min.	$0.49 \mathrm{~N}\{50 \mathrm{gf}\}$
OT min.	2.4 mm
MD max.	0.8 mm
FP max.	43.6 mm
OP	$41.3 \pm 0.8 \mathrm{~mm}$

Reverse Hinge Lever

Note: The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers. Reverse-type models are highly vibration- and shock-resistive because the pin plungers are normally pressed.
Z-15GM55-B

OF max.	$1.96 \mathrm{~N}\{200 \mathrm{gf}\}$
RF \min.	$0.27 \mathrm{~N}\{28 \mathrm{gf}\}$
OT min.	5.6 mm
MD max.	0.89 mm
FP max.	23.8 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Reverse Short Hinge Roller Lever

Note: The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers. Reverse-type models are highly vibration- and shock-resistive because the pin plungers are normally pressed.

Z-15GM2255-B

OF max.	$5.69 \mathrm{~N}\{581 \mathrm{gf}\}$
RF \min.	$1.67 \mathrm{~N}\{170 \mathrm{gf}\}$
OT min.	2 mm
MD max.	0.28 mm
FP max.	31.8 mm
OP	$29.4 \pm 0.4 \mathrm{~mm}$

Reverse Hinge Roller Lever

Note: The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers. Reverse-type models are highly vibration- and shock-resistive because the pin plungers are normally pressed.

Z-15GM255-B

9.5 dia. $\times 4$ (plastic roller)

OF max.	$2.65 \mathrm{~N}\{270 \mathrm{gf}\}$
RF min.	$0.55 \mathrm{~N}\{56 \mathrm{gf}\}$
OT min.	4 mm
MD max.	0.64 mm
FP max.	35 mm
OP	$30.2 \pm 0.8 \mathrm{~mm}$

Flexible Rod (Coil Spring)

Z-15GNJ55-B

OF max. PT max.	$0.49 \mathrm{~N}\{50 \mathrm{gf}\}$ $(20 \mathrm{~mm})$
OT	42 to 60 mm

Note: 1. Operation is possible in any direction other than the axial direction (indicated by the arrow \downarrow).
2. Use only the area within the top 30 mm of the rod as the operating part. (Do not use the area that falls within 80 mm from the mounting hole as the operating part. Using this area may cause damage to the nylon rod.)

Flexible Rod (Steel Wire)
 Z-15HNJS55-B

OF max. PT max.	$0.15 \mathrm{~N}\{15 \mathrm{gf}\}$ $(25 \mathrm{~mm})$

Note: 1. Operation is possible in any direction other than the axial direction (indicated by the arrow \downarrow).
2. Use only the area within the top 30 mm of the rod as the operating part. (Do not use the area that falls within 100 mm from the mounting hole as the operating part. Using this area may cause damage to the steel wire.)
3. The steel wire can be replaced if damaged. (Model: Lever for HNJS55)

Basic Models (Drip-proof) with Terminal Protective Cover

Pin Plunger

Z-15GA55-B5V

OF max.	2.45 to 4.22 N RF min.
RF to 431 gf$\}$	
PT max.	$2.12 \mathrm{~N}\{114 \mathrm{gf}\}$
OT min.	0.13 mm
MD max.	0.06 mm
OP	$15.9 \pm 0.4 \mathrm{~mm}$

Z-15GK3A55-B5V

OF max.	$5.30 \mathrm{~N}\{541 \mathrm{gf}\}$
RF min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	2.4 mm
OT min.	3.5 mm
MD max.	0.06 mm
OP	$37.8 \pm 1.2 \mathrm{~mm}$

Panel Mount Plunger

Z-15GQA55-B5V

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.

Panel Mount Roller Plunger

Z-15GQ22A55-B5V

12.7 dia. $\times 4.8$ (stainless-steel roller)

OF max.	$5.30 \mathrm{~N}\{541 \mathrm{gf}\}$
RF min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	1.8 mm
OT min.	3.58 mm
MD max.	0.06 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$

Panel Mount Cross-roller Plunger

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.
Long Hinge Lever Z-15GW44A55-B5V

OF max.	0.88 N $\{90 \mathrm{gf}\}$ RF min. 1.14 N $\{116 \mathrm{gf}\}$ OT min.
5.6 mm	
MD max.	3.5 mm
FP max.	33 mm
OP	$19 \pm 1.2 \mathrm{~mm}$

Hinge Lever Z-15GWA55-B5V

OF max.	$0.98 \mathrm{~N}\{100 \mathrm{gf}\}$
RF min.	$0.14 \mathrm{~N}\{14 \mathrm{gf}\}$
OT min.	5.6 mm
MD max.	2 mm
FP max.	28.2 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Short Hinge Roller Lever
Z-15GW22A55-B5V

OF max.	$1.96 \mathrm{~N}\{200 \mathrm{gf}\}$
RF min.	$0.41 \mathrm{~N}\{42 \mathrm{gf}\}$
OT min.	2.4 mm
MD max.	0.8 mm
FP max.	32.9 mm
OP	$30.2 \pm 0.4 \mathrm{~mm}$

OF max.	$1.27 \mathrm{~N}\{130 \mathrm{gf}\}$
RF min.	$0.21 \mathrm{~N}\{21 \mathrm{gf}\}$
OT min.	4 mm
MD max.	1.6 mm
FP max.	36.5 mm
OP	$30.2 \pm 0.8 \mathrm{~mm}$

Hinge Roller Lever

Note: $\mathrm{t}=1$ (stainless-steel lever)

Unidirectional Short Hinge Roller Lever
Z-15GW2277A55-B5V

Maintained-contact Models

Pin Plunger

Z-15ER

Slim Spring Plunger
Z-15ESR

Note: Stainless steel plunger (tip only, flat, R1 bevel).
Hinge Lever

OF max.	$1.77 \mathrm{~N}\{181 \mathrm{gf}\}$
RF min.	$0.49 \mathrm{~N}\{50 \mathrm{gf}\}$
OT min.	2.4 mm
MD max.	0.8 mm
FP max.	43.6 mm
OP	$41.3 \pm 0.8 \mathrm{~mm}$

Plunger

OF max.	1.96 to 2.50 N $\{200$ to 255 gf$\}$				
PT max.	0.4 mm OT min.				
0.13 mm		$	$	OP	$15.9 \pm 0.4 \mathrm{~mm}$
:---	:---				
Reset Button					
OF max.	0.55 to 2.79 N $\{56$ to 285 gf$\}$ 0.4 mm				

Plunger
OF max. $2.65 \mathrm{~N}\{270 \mathrm{gf}\}$ PT max. 0.4 mm OT min. 1.6 mm OP $28.2 \pm 0.5 \mathrm{~mm}$ Reset Button OF max. OT min. $2.79 \mathrm{~N}\{285 \mathrm{gf}\}$

Lever Tip

OF max.	$0.54 \mathrm{~N}\{55 \mathrm{gf}\}$
OT \min.	5.6 mm
FP max.	28.2 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Reset Button

OF max.	$2.94 \mathrm{~N}\{0.3 \mathrm{gf}\}$
OT min.	0.4 mm

Terminals

Basic Models (General-purpose) \& Split-contact Models

Note: With reverse action models (Z-15GM), the positions of NO and NC terminals are re- Note: With reverse action models (Z-10FM), the poversed.

Basic Models (Drip-proof) without Terminal Protective Cover

Without Terminal Protective Cover

Three, M4×5.5
Terminal screws
(with toothed
washer)
Note: With reverse action models (Z-15GM), the positions of NO and NC terminals are reversed.

Molded Terminals (Drip-proof Type/Molded Terminal)

Model Number Legend

$\mathbf{Z}-\square 55-\mathbf{M} \square \square \square \mathbf{M}$
 $1 \quad 234$

1. Drip-proof Type
2. Lead Outlets

None: VSF
19: VCT
3. Directions of Lead Outlets

Refer to the following diagrams.
4. Length of Lead Outlets
0.5: 0.5 m

1: 1 m
2: $\quad 2 \mathrm{~m}$
3: 3 m
Contact Form

Note: With the reverse action model (Z-15GM), the positions of NO and NC terminals are reversed.

Dimensions

L/R Type

(The following illustration is the R type.)

Lead wire	\mathbf{a}	\mathbf{b}	\mathbf{d}
VSF	12	4	13
VCT	19	11	20

D Type

Lead wire	a	b	d
VSF	12	4	12
VCT	19	11	16

Lead Wire Specifications

Lead wire	Nominal crosssectional area (mm^{2})	Finished outer diameter (mm)	Connection to terminal	Length (m)
VSF (single-core, vinyl cord)	1.25	Approx. 3.1 dia.	Black: COMWhite: NORed: NC	0.5, 1, 2, 3
VCT (vinyl-insulated cable)		Three-core: approx. 10.5 dia.		

Note: No models with molded terminals are approved by UL, CSA, or TÜV.

Precautions

Refer to the Technical Information for Basic Switches (Cat. No. C122) for common precautions.

Correct Use

Mounting

Use M4 screws with plane washers and spring washers to mount the Switch. Tighten each mounting screw securely to a torque of 1.18 to $1.47 \mathrm{~N} \cdot \mathrm{~m}\{12$ to $15 \mathrm{kgf} \cdot \mathrm{cm}\}$.

Basic Models (General-purpose) \& Split-contact Models

Basic Models (Drip-proof) without Terminal Protective Cover

Two, 4.2 dia. mount

Panel Mount Plunger Panel Mount Roller Plunger

Panel Mount Switch (Z-15 \square Q $\square, \mathbf{Z - 0 1} \square \mathbf{Q} \square$)

When mounting the panel mount plunger model with screws on a side surface, be careful of the dog angle and operation speed. Excessive dog angle or operation speed may damage the Switch.

The Switch can be panel mounted, provided that the hexagonal nut of the actuator is tightened to a torque of 2.94 to $4.9 \mathrm{~N} \cdot \mathrm{~m}\{30$ to $50 \mathrm{kgf} \cdot \mathrm{cm}$ \}.

When using the panel mount plunger model mounted with screws on a side surface, be careful not to apply a large shock. Applying a shock exceeding 100G may damage the Switch.
When using the panel mount plunger model mounted with screws on a side surface, remove the hexagonal nuts from the actuator.

High-sensitivity Switch (Z-15H)

When using the Switch in a DC circuit, be sure to provide an arc suppressor as well because the small contact gap of the Switch may result in contact troubles.

In an application where a high repeat accuracy is required, limit the current that flows through the Switch to within 0.1 A . Also, use a relay to control a high-capacity load if the Switch is connected to such a load. (In this case, the exciting current of the relay coil is the load of the Switch.)
Do not apply a force of $19.6 \mathrm{~N}\{2 \mathrm{kgf}\}$ or higher to the pin plunger.
Exercise care that the environment conditions such as temperature and humidity do not change abruptly.

Models with Drip-proof Terminal Cover (Z- \square A55-B5V)

Wiring

To attach the Protective Cover to the case, hold the cover in almost parallel to the case and then push it to the case. If the cover is pushed diagonally, the rubber packing may slip off, degrading the sealability of the Switch.

Use round solderless terminals having the following dimensions to connect leads to the terminals. Tighten the screws of terminals to a torque of 0.78 to $1.18 \mathrm{~N} \cdot \mathrm{~m}\{8$ to $12 \mathrm{kgf} \cdot \mathrm{cm}\}$.

Use the terminal shown below.

A cable 8.5 to 10.5 mm in diameter can be applicable to the sealing rubber of the lead outlet of the Switch. A two-core or three-core VCT cable having a cross-sectional area of $1.25 \mathrm{~mm}^{2}$ is especially suitable for this.

Use M4 small screws with spring toothed washer are used as the terminal screws.

Drip-proof Switch (Z $\square 55$)

The Switch is not perfectly oil-tight; so do not dip it in oil or water.
The rubber boots are made from weather-resistive chloroprene rubber.

Do not use Basic Switches in places with radical changes in temperature.

Split-contact Switch (Z-10F \square Y)

The applicable current varies depending on how the contacts are used. If the Switch is connected in series, the Switch can endure a current 1.5 to 2 times higher than the current that can be applied in parallel connection.

Flexible Rod Switch (Z-15 \square NJ $\square 55$, Dripproof)

When the rod is fully swung, the Switch may operate when the lever returns, causing chattering. Use a circuit that compensates for chattering wherever possible.
Do not switch the rod to the fullest extent when the Switch is to break a power circuit because such a practice may cause metal deposition to occur between the mating contacts of the Switch.

Micro Load Applicable Range

Using a model for ordinary loads to open or close the contact of a micro load circuit may result in faulty contact. Use models that operate in the following range. However, even when using micro load models within the operating range shown here, if inrush current occurs when the contact is opened or closed, it may increase contact wear and so decrease life expectancy. Therefore, insert a contact protection circuit where necessary.
The minimum applicable load is the N -level reference value. This value indicates the malfunction reference level for the reliability level of 60% ($\lambda 60$). The equation, $\lambda 60=0.5 \times 10^{-6} /$ operations indicates that the estimated malfunction rate is less than $1 / 2,000,000$ operations with a reliability level of 60%.

Item	Z-01H	Z-15 $\square, \mathbf{Z - 1 0 F Y}$
Minimum applicable load	1 mA at 5 VDC	160 mA at 5 VDC

Others

Do not apply an excessive force to the mounting bracket with a screwdriver or a similar object when attaching or detaching the protective cover; otherwise, the cover will be deformed.

This terminal protective cover cannot be used with models whose model number does not have the prefix "-B5V."
Terminal protective covers can be ordered separately for maintenance use.

Accessories (Order Separately)

Refer to $Z / A / X / D Z$ Common Accessories for details about Terminal Covers, Separators, and Actuators.

